## 研究論文

# 流動反応装置によるディーゼル燃料の熱分解と 酸化過程に関する研究

| 徳島大学大学院工学研究科        | 中        | 美  | 智   | 子  |
|---------------------|----------|----|-----|----|
| ヤンマーディーゼル(株)汎用機事業本部 | 池        | 田  | 明   | 夫  |
| 徳島大学大学院工学研究科        | <u> </u> | 輪  |     | 惠  |
| 徳島大学工学部機械工学科        | 木戸       | ゴП | 善   | 行  |
| 徳島大学大学院工学研究科        | モハ       | ンマ | ディ・ | アリ |

## 1 まえがき

ディーゼル機関は, 高い熱効率と高出力の点 から、 輸送機関ばかりでなく産業用動力源とし て広範囲に利用されているが. これら機関から 排出される窒素酸化物 (NOx) や黒煙, 青白煙な どの粒子状物質 (PM)の大幅な低減が、環境保 全の立場から緊急の課題である。そのため、デ ィーゼル機関では、PM と NOx の低減のため高 圧噴射や排気ガス再循環 (EGR) が採用され、ま た,予混合圧縮着火方式も導入されている(1)-(4) さらに,軽油中の芳香族組成や芳香族環数とす す生成との関係など、燃料面からの排出ガス低 減も検討されている(5).しかしながら、今後、 ますます厳しくなる大気環境問題に対応するに は、これまでの燃焼改善技術に加えて、ディー ゼル燃焼過程における燃焼反応機構に関する研 究が必要である 炭化水素燃料の化学反応過程 と有害成分の生成過程については、炭素数 C1~ C4 までの比較的構造の単純な燃料を対象にし て、流動反応装置<sup>(6)</sup>や急速圧縮装置を用いた反 応解析や,反応動力学を用いた詳細な数値解 析(7)が行われ、酸化反応経路が明らかになって きた<sup>(8)</sup> しかし、炭素数の大きい燃料について は. ガソリン機関の自発火機構に関連してオク タンやヘプタンの酸化反応の報告<sup>(9)-(11)</sup>が見ら れる程度で,ディーゼル燃料の燃焼反応機構に ついてはまだ十分理解されていないのが現状で ある.

ディーゼル燃焼では,高温高圧雰囲気中に噴 射された軽油燃料が、着火遅れ期間中に微粒化、 蒸発して、空気と混合する物理的過程と、熱分 解や前炎反応などの化学的過程を経て、自発火 に必要な混合気濃度と温度に達した特定の場所 で着火して燃焼が始まる。この着火遅れ期間に 準備される可燃混合気の組成とその濃度は、着 火後の燃焼経過を支配して、機関性能ばかりで なく、NOx や微粒子などの排出量に大きく影響 する。ディーゼル燃焼過程における燃焼生成物 の化学組成については,実機関や急速圧縮装置 にガスサンプリング法を適用して、NO、炭化 水素およびすす生成の時間、空間分布が調べら れ<sup>(12)-(17)</sup>,また、レーザー光学計測法による OH や NO の 2 次元分布が明らかにされてい る<sup>(18)(19)</sup>.しかし、ディーゼル燃料の燃焼反応 機構や有害排出物質の生成機構を詳細に調べる には,着火開始までに準備される燃料の熱分解 成分自身を明らかにすることが必要である。こ れまで著者らは、ディーゼル噴霧の着火遅れ期

間に燃料が低級化して、CH<sub>4</sub> や C<sub>2</sub>H<sub>4</sub> などの低 沸点炭化水素が可燃混合気として準備されるこ とを全量サンプリング法により調べてきた が<sup>(20)(21)</sup>,ディーゼル噴霧では、燃料の蒸発に よる物理的過程が介在し、また、温度の空間的 な不均質が存在するため、燃料の熱分解温度と 生成される炭化水素成分濃度との関係を定量的 に定めることが困難であった.

そこで、本研究では、ディーゼル噴霧の着火 遅れ期間での燃料の化学的挙動を明らかにする ため、微粒化や蒸発などの物理的過程を除いた 条件が設定できる流動反応装置を試作した.ま ず、この装置を用いて得られた反応ガス組成と 実際のディーゼル燃焼場で得られた燃料の熱分 解組成を比較して本装置の有効性を検討した. さらに、直鎖飽和炭化水素燃料と芳香族含有燃 料の熱分解過程と酸化過程に及ぼす雰囲気温度 の影響について、温度範囲 900 K~1500 K のも とで燃料の低級化過程とその安定化学種濃度を 調べた.

## 2 実験装置および方法

### 2.1 流動反応装置

本研究で試作した流動反応装置を図1に示 す.この装置は,燃料蒸発部,高温反応部およ びガス分析部の3つの主要部から構成される. 燃料蒸発部は,円筒容器(内径40mm,容積



Fig. 1. Schematic diagram of experimental setup.

214cc)で、燃料を定常的に供給するためのガソ リン機関用噴射弁を取り付け、外周部には燃料 蒸発用のヒーターを設けた。燃料供給量は、噴 射弁に印加するパルス間隔を変更して調節し た。蒸発部内に噴射された燃料は、燃料の最終 蒸発温度に加熱して、Nッキャリアガスと混合し、 下流部の高温反応部に供給して、燃料の熱分解 および酸化実験を行った。蒸発部と高温反応部 との中間に空気混合部を設けて,燃料の酸化実 験を行うことができる。なお、混合気の供給経 路は、燃料の凝縮を防ぐため、すべて 250℃に 保温した.反応部では、中心部のムライト反応 管 (3Al<sub>2</sub>O<sub>3</sub>・2 SiO<sub>2</sub>,内径 9mm,長さ 400mm) を, 赤外線中央集光加熱炉 (真空理工製, E410 型, 出力 8kW,加熱有効長さ 265mm) で外周部から 加熱し、反応管内ガス温度を 1500 K まで変更 することができる。反応管内温度の設定は、反 応管入口から 120mmの位置 (T. C. Point) に取り 付けた R 型熱電対で計測し、温度コントローラ で所定の温度に設定した。このことによりディ ーゼル噴霧が温度の異なる高温雰囲気中に噴射 された状態を模擬できる.図2は、設定温度 900 K および 1200 K でキャリアガス流量 Qc 1/minを変化させたときの加熱炉上流から反応



Fig. 2. Temperature distribution in infrared reactor.

管内軸方向 X の温度分布を示す いずれの設定 温度でも軸方向の温度分布は、ほぼ一定の値を 示すが、キャリアガスを流すと下流側の温度は 設定温度よりも 100 K ほど高くなる。本実験で は、反応管内最高温度を雰囲気温度 Tr と定義 し. 加熱部有効長 265mm をガスが通過する時 間を滞留時間 tr とした。なお、燃料流量とキャ リアガス流量は、キャリアガスを酸素濃度 5% と仮定したときの当量比が 2.5 となるように設 定した また、有効加熱部を通過する混合気の 滞留時間は 20ms から 50ms で, 管内の流れは レイノズル数 1300 以下の層流である。反応管 を通過した反応ガスは,希釈部を経てガス分析 部に送られ、高沸点、中沸点、低沸点炭化水素 および無機ガスを分析した、炭化水素の分析に は FID ガスクロマトグラフ (柳本製 G3800) を 用い、中・高沸点炭化水素は、250℃に加熱し た高温サンプラーを用いて分析部に導入した. 燃料および中沸点炭化水素は、シリコン OV-101 5% クロモソーブ W カラム (内径 3mm, 長さ 2m) を、炭素数4までの低沸点炭化水素は、ス クワラン 2% 活性炭アルミナカラム (内径 3mm, 長さ 3m) で昇温分析した.また,無機ガスのう ち O<sub>2</sub> と CO にはモレキュラーシーブ 5A (内径 3mm, 長さ 2m), H<sub>2</sub> と CO<sub>2</sub> には活性炭カラム (内径 3mm,長さ 2m)を使用した。

#### 2.2 試験燃料

試験燃料には,軽油の熱分解,酸化過程を模擬するため,直鎖飽和炭化水素燃料 AR0 および 芳香族燃料 AR100 を混合した燃料を使用した. 試験燃料 AR0,AR100 および JIS1 号軽油 GO1 の性状を表1に示す.軽油 GO1 (密度 835kg/m<sup>3</sup>,低発熱量 42,880kJ/kg,セタン指数 56.3,芳香族含有率 25.7%)に対し,燃料 AR0 (Solvent#0M,密度 756kg/m<sup>3</sup>,低発熱量 47,450kJ/kg,セタン指数 80.0)は、 $C_{12}H_{26}$ ,  $C_{13}H_{28}$ , $C_{14}H_{30}$ を質量割合でそれぞれ 27.0wt%, 47.0wt%,26.0wt%含む直鎖飽和炭化水素で,燃 料 AR100 (Swasol 1800,密度 933kg/m<sup>3</sup>,低発

| Table 1. T | est fuel | properties |
|------------|----------|------------|
|------------|----------|------------|

| Fuel Code                           | AR0     | AR100  | GO1     |
|-------------------------------------|---------|--------|---------|
| Fuel                                | Solvent | Swasol | Gas Oil |
| Density kg/m <sup>3</sup> (15°C)    | 756     | 933    | 835     |
| Viscosity mm <sup>2</sup> /s (30°C) | 3.02    | 1.46   | 3.78    |
| Distillation Temp. °C               |         |        |         |
| IBP                                 | 218.0   | 194.0  | 165.0   |
| 10 vcl%                             | 223.5   | 202.0  | 215.5   |
| 50 vcl%                             | 227.0   | 211.5  | 286.0   |
| 90 vol%                             | 230.0   | 239.0  | 341.5   |
| FBP                                 | 248.0   | 254.5  | 356.5   |
| Saturates wt%                       | 100     | 0      | 74.3    |
| Aromatics wt%                       | 0       | 100    | 25.7    |
| 1 Ring                              | 0       | 59.1   | 21.2    |
| 2 Rings                             | 0       | 40.9   | 3.2     |
| 3 Rings                             | 0       | 0      | 1.3     |
| C/H kg/kg                           | 5.43    | 9.74   | 6.39    |
| Sulfur wt%                          | 1>      | 0.0002 | 0.14    |
| LHV kJ/kg                           | 47450   | 40435  | 42880   |
| Theoretical air kg/kg               | 15.12   | 13.59  | 14.54   |
| Cetane Index                        | 80.0    | 12.1   | 56.3    |

熱量 40,435kJ/kg, セタン指数 12.1) は, 1 環芳 香族 59.1wt% (アルキルベンゼン類 50.6wt%, ナ フテンベンゼン類 8.5wt%) および 2 環芳香族 40.9wt% (ナフタレン類) の芳香族 100% 燃料であ る.芳香族燃料の影響を調べる場合, AR0 燃料 に AR100 燃料を容積割合で 50vol% 混合した燃 料 AR50 を使用した.

### 3 直鎖炭化水素燃料の熱分解と酸化過程

#### 3.1 直鎖炭化水素燃料の熱分解過程

まず,芳香族を含まない直鎖飽和炭化水素燃料について,キャリアガスに N<sub>2</sub>を用いて酸素のない状態で燃料 ARO の熱分解過程を調べた. 図 3 は滞留時間 tr=25ms のもとで,雰囲気温度 Tr を変更したときの燃料成分のガスクロマトグ ラムをガスクロマトグラフの保持時間 t<sub>R</sub> に対し て示す.雰囲気温度 Tr=900 K では,保持時間 2~3min 付近に低沸点成分がわずかに検出される が,主に検出される成分は,炭素数 C<sub>12</sub>, C<sub>13</sub> お よび C<sub>14</sub> の燃料成分である. Tr が 1050 K を越 えると,炭素数 4 以下の低沸点成分が急激に増



Fig. 3. Chromatograms of thermal cracking experiment of AR0 fuel.

加し,1500 K では燃料成分は検出されず低沸点 成分に分解していることがわかる.

つぎに、燃料の熱分解反応がどの程度進行したかを評価する指標として、投入燃料中の炭素 原子および水素原子のなかで、熱分解あるいは酸化反応によって反応生成物に変換された炭素 と水素の割合を、燃料および反応生成物中の炭 素原子モル数および水素原子モル数の比  $C_p/C_f$ および  $H_p/H_f$  として、それぞれ式 (1) および式 (2) で定義した.

$$\frac{C_p}{C_f} = \frac{\sum_{i=1}^{n} X_{pi}^c}{X_f^C}$$
(1)

$$\frac{H_p}{H_f} = \frac{\sum_{i=1}^n X_{pi}^H}{X_f^H}$$

ここで、 $X_{p}^{c} X_{pi}^{c}$  および $X_{p}^{H} X_{pi}^{H}$  は、それぞれ燃 料中の炭素原子モル数と反応生成物中の炭素原 子モル数および水素原子モル数、添え字"f"、 および"p"は、それぞれ燃料、生成反応物、 また、"i"は反応生成物のなかの特定成分を 示す.

(2)

上式を用いて、燃料の熱分解反応や酸化反応 で生成するそれぞれの原子のモル数比を求める 場合、反応管出口ですべての成分を分析して、 各成分のモル比を知る必要があり、また、反応 後のモル数の増加や反応の進行度などによる誤 差が考えられる.ただ、本実験のように酸素分 率が低い場合では、反応前後の C<sub>p</sub>/C<sub>f</sub>の誤差は、 最大 5% 程度であった.

図4は,雰囲気温度Trを変更したときの直 鎖飽和炭化水素燃料AR0の熱分解の進行度を, 炭素原子モル数比C<sub>p</sub>/C<sub>f</sub>および水素原子モル数



Fig. 4. Effect of ambient temperature on thermal cracking of AR0 fuel.

比 H<sub>n</sub>/H<sub>f</sub>で示す. 図の上段は, 燃料成分 C<sub>12</sub>~ C14, 熱分解によって生成された中沸点成分 C10 ~C<sub>11</sub> と C<sub>5</sub>~C<sub>9</sub>, および低沸点成分 C<sub>1</sub>~C<sub>4</sub> 別に 分類したものである。燃料 AR0 は、1000 K 付 近で中沸点成分 C5~C9 や低沸点成分 C1~C4 に 分解し、雰囲気温度の上昇とともに燃料成分は 低沸点成分に分解されることがわかる.ただ, このとき燃料の炭素数に近い C10 や C11 に比べ て C1~C4 の低沸点成分が多く生成される. さ らに、高温の 1500 K では、燃料中の炭素は、 ほとんど低級化してガス状炭化水素となる。中 段は、低沸点成分中の各ガス成分構成を示す。 いずれの雰囲気温度においても、低沸点成分の うち C<sub>2</sub>H<sub>4</sub> が最も多く生成される. これは, 直 鎖炭化水素燃料の熱分解では、比較的低温で水 素の引き抜きが進行し、β開裂により C<sub>2</sub>H<sub>4</sub> が主 体に生成されるためで、CH4 を除き炭素数 2 以 上の低沸点成分は、C<sub>2</sub>H<sub>2</sub> や C<sub>3</sub>H<sub>6</sub> などの不飽和 炭化水素が多いことが特徴である(22)。また、図 の下段に示すように、熱分解の開始とともに水 素が生成され、H<sub>o</sub>/H<sub>f</sub>値は生成した低沸点炭化 水素 C<sub>p</sub>/C<sub>f</sub>の約 10% となり, 雰囲気温度が 1350 Kを超えると水素濃度が急激に増加する.

次に、燃料の低級化過程に及ぼす反応時間の 影響を、燃料が反応管を通過する滞留時間を変 化させて調べた.図5は、雰囲気温度 Tr=1350 Kの窒素雰囲気中で、滞留時間 tr を 20ms から 50ms まで変化させたときの熱分解反応の進行 度を  $C_p/C_f$  および  $H_p/H_f$  で示す.滞留時間が長 くなると、 $C_{12}\sim C_{14}$ の燃料成分は単調に減少し て、熱分解によって生成される低沸点成分の量 は、反応管内の滞留時間に比例して増加するが、 燃料が反応管内で単位時間当たりに受熱する熱 量で考えると、反応時間よりもむしろ雰囲気温 度の影響の方が大きいと考えられる。

### 3.2 直鎖炭化水素燃料の酸化過程

前節では,酸素のない雰囲気での直鎖炭化水 素燃料 AR0 の熱分解反応について検討を行った が,本節では,酸素雰囲気中での燃料の低級化



Fig. 5. Effect of residence time on thermal cracking of AR0 fuel.

および酸化過程を,燃料とキャリアガスの質量 流量比 F/G=0.04, 酸素濃度 5% (当量比 2.5), 滞 留時間 tr=25ms のもとで、雰囲気温度 Tr を 900 ~1500 K 間で変化させて調べた。このとき反応 管を出た生成ガスの反応を凍結するため,反応 管出口で室温の窒素ガスと希釈したのち, 250℃に保温したガス導入管を通して分析計へ 導いた.また、反応管内では酸素付加による発 熱反応で温度上昇をともなうが、管内に設けた 熱電対によって設定温度を一定に保って実験を 行った.図6に燃料成分、中・低沸点炭化水素 および無機ガスに対する雰囲気温度の影響を, 炭素原子モル比 C<sub>0</sub>/C<sub>1</sub>および水素原子モル比 H<sub>p</sub>/H<sub>f</sub>で示す. 図の下段には, H<sub>2</sub>, CO, CO<sub>2</sub> お よび反応後の O2 濃度を示す。図からわかるよ うに、O2 雰囲気中においても燃料の熱分解開始 温度は、およそ 1000 K 付近で、窒素雰囲気中 と同様の傾向となる.このことから、この温度 では O<sub>2</sub> が存在しても酸化反応が緩慢で,燃料 の熱分解反応が主体に進行しているといえる. 1200 K を越えると、燃料中の炭素原子のうち



Fig. 6. Effect of ambient temperature on oxidation of AR0 fuel.

30% 程度が低沸点炭化水素として検出されるが, このとき燃焼生成物である CO や CO<sub>2</sub> はほとん ど検出されず O<sub>2</sub> の消費も少ない. さらに,温 度が高くなると燃料成分は,温度上昇とともに 単調に減少し,生成された C<sub>2</sub>H<sub>4</sub> などの低沸点 成分は,CO や CO<sub>2</sub> に転換され,O<sub>2</sub> 濃度は初期 O<sub>2</sub> 濃度の約半分になる.

次に,前述まで得られた流動反応管による結 果が,ディーゼル燃焼での燃料の挙動を,どの 程度まで表現できているかを確かめるため,急 速圧縮装置を用いてディーゼル噴霧の燃焼過程 における混合気組成の時間履歴を全量サンプリ ング法を用いて調べた.図7は,直鎖飽和炭化 水素燃料 AR0 CN49 (密度 788kg/m<sup>3</sup>,低位発熱 量 43,910kJ/kg,セタン価CN48.8)を用いて, 噴射圧力 P<sub>inj</sub>=50 MPa,雰囲気温度 T<sub>i</sub>=850 K の 条件で,ディーゼル燃焼期間中の炭素数4以下 の低沸点炭化水素成分(LHC)の時間履歴と熱発 生率経過 dQ/dt を噴射開始からの時間tに対し



Fig. 7. History of LHCs, heat release rate and gas temperature during typical diesel combustion.

て示す。図からわかるように、着火遅れ期間後 半に、燃料は熱分解し高濃度の C<sub>2</sub>H<sub>4</sub>, C<sub>2</sub>H<sub>2</sub>, C<sub>3</sub>H<sub>6</sub>などの不飽和炭化水素が蓄積して、急激な 初期燃焼を経て拡散燃焼期に移行する。このと き初期燃焼期では、高濃度の C<sub>2</sub>H<sub>4</sub> が生成され るのに対して、拡散燃焼期では、CH4 を主体に 燃焼が進行することが大きな特徴である。図 8(a), (b) は, 燃料 AR0 の着火遅れ期間後半 t=2.2ms における燃料成分 (C<sub>12</sub>H<sub>26</sub>, C<sub>13</sub>H<sub>28</sub>, C14Hau) 以外の中沸点炭化水素成分 (MHC) の構 成割合と低沸点炭化水素成分の内訳をそれぞれ CH4 換算値で示したものである(17). 図から, デ ィーゼル噴霧の着火遅れ期間に準備される可燃 混合気は、約50%の低沸点炭化水素成分と中沸 点成分で構成され、低沸点炭化水素のうち 50% 以上が C<sub>2</sub>H<sub>4</sub> で, CH<sub>4</sub> 以外の成分は C<sub>2</sub>H<sub>2</sub> や C<sub>3</sub>H<sub>6</sub>などの不飽和炭化水素である。この結果は、 前述の流動反応管による熱分解成分の構成と同 様の傾向を示すことがわかる。ただ、流動反応



Fig. 8. Composition of mixture during ignition delay period.

管と急速圧縮装置との設定温度条件に差がみら れるが、この温度の差は、ディーゼル噴霧の着 火遅れ期間の後半では、局所的な発熱反応もあ り、また C<sub>2</sub>H<sub>2</sub> も生成されていることを考える と<sup>(23)</sup>、ディーゼル噴霧では、周囲空気温度より も高温の反応領域で熱分解が進行していること を示唆しているといえる.以上のことから、流 動反応管での分析結果は、ディーゼル噴霧の着 火遅れ期間の燃料の化学的挙動を表現できてい るといえる.

#### 4 芳香族炭化水素燃料の熱分解と酸化

前章では,直鎖飽和炭化水素燃料の熱分解と 酸化過程について解析を行ったが,ディーゼル 軽油には,芳香族炭化水素成分が20数%含まれ ており,これらの成分がNOxや微粒子の排出 に大きく影響することが知られている<sup>(5)</sup>.そこ で,本章では,芳香族炭化水素の熱分解に及ぼ す雰囲気温度とO<sub>2</sub>濃度の影響を調べた.試験 燃料には,直鎖飽和炭化水素AR0を基材燃料と して,芳香族燃料AR100を体積割合で50% 混合 したAR50 燃料を使用した.

#### 4.1 芳香族混合燃料の熱分解過程

図9は、AR50 燃料で雰囲気温度 Tr を変化さ せたときのクロマトグラムを示す. Tr=1050 K 付近までは、燃料の成分分布と変わらず、低沸 点成分が検出される 1200 K においても C<sub>10</sub>・C<sub>11</sub>



Fig. 9. Chromatograms of thermal cracking of AR50 fuel.

の芳香族成分にはあまり変化がみられない.また,1500 K においては燃料中の芳香族成分 C<sub>10</sub>・C<sub>11</sub> ばかりでなく,基材燃料成分 C<sub>12</sub>~C<sub>14</sub> も低級化されずに多く残る.図 10(a),(b)は, それぞれ燃料 AR0 と燃料 AR50 について,雰囲 気温度 Tr を変化させたときの各炭化水素反応 成分を CH<sub>4</sub> 換算で算出した構成割合を示す.図 中の右端の数値は,反応管出口における全炭化 水素成分の CH<sub>4</sub> 換算総量を示し,いずれの温度 でもほぼ投入燃料の 90% 以上が反応生成物とし て回収されている.図から直鎖炭化水素燃料 AR0 の場合(同図 a),1050 K を越えると低沸点 炭化水素成分が検出され,1500 K においても 50% 程



Fig. 10. Effect of ambient temperature on thermal cracking of AR0 and AR50 fuels.

度の燃料成分が未反応のまま残り、とくに炭素 数  $C_{10}$  や  $C_{11}$  の芳香族成分の低級化反応が遅れ ることがわかる. 図 11 は、AR50 燃料について、 雰囲気温度 Tr に対する熱分解の進行度を、炭 素原子および水素原子モル比  $C_p/C_f$ ,  $H_p/H_f$ で整 理したものである. 図上段の Tr=900 K での数 値は、AR50 燃料を構成する各成分の炭素原子 モル数の割合を示し、芳香族成分は30 数%であ る. 図 10 でも示したように, この芳香族成分 は, 雰囲気温度が高くなってもほとんど熱分解 せずに残り, 1500 K の高温でも基材燃料である 直鎖炭化水素成分  $C_{12} \sim C_{14}$  も燃料成分のまま残 留する. このため, 低沸点炭化水素の生成量は, AR0 に比べて 50% 以下になるが,  $H_2$  濃度は図 4 の熱分解実験の場合とあまり変わらない. 図 12 は, 雰囲気温度 1350 K のもとで, 芳香族含有



Fig. 11. Effect of ambient temperature on thermal cracking of AR50 fuel.



Fig. 12. Effect of residence time on thermal cracking of AR50 fuel.





燃料 AR50 の熱分解過程に及ぼす滞留時間の影響を示す. この図から,芳香族が燃料中に存在 すると滞留時間を長くしても,芳香族成分 C<sub>10</sub> や C<sub>11</sub> の熱分解はほとんど進行せず,しかも直 鎖飽和成分の熱分解反応も妨げられることがわ かる.燃料中の芳香族成分は,PM の生成に影 響を及ぼすことから,このような直鎖飽和炭化 水素成分と芳香族成分との反応機構についても 明らかにする必要がある.

次に,芳香族含有率が熱分解過程に及ぼす影響を調べた.図 13 は,雰囲気温度 1350 K,滞 留時間 25ms のもとで,直鎖飽和炭化水素燃料 AR0 と芳香族燃料 AR100 の体積混合割合を変え ることにより,芳香族含有率を変更したときの 熱分解成分の変化を炭素原子および水素原子モ ル数比 C<sub>p</sub>/C<sub>f</sub>, H<sub>p</sub>/H<sub>f</sub>で示す.直鎖炭化水素燃 料成分 (AR0) の C<sub>12</sub>~C<sub>14</sub> は,この雰囲気温度で 60% 近く低沸点成分 C<sub>1</sub>~C<sub>4</sub> に低級化するが,芳 香族含有率 25vol% (AR25) では,低沸点成分 C<sub>1</sub> ~C<sub>4</sub> は AR0 の約半分の濃度となる.芳香族含 有率がさらに増加すると,残留する直鎖燃料成



Fig. 14. Effect of ambient temperature on oxidation of AR50 fuel.

分  $C_{12}$ ~ $C_{14}$  も多くなり,低沸点成分は減少する. しかし,芳香族成分が増加しても,水素の生成 量はほぼ一定濃度となる.一般に,パラフィン 系炭化水素の熱分解では,脱水素過程は C-C結 合より起こりにくいとされているが,芳香族炭 化水素の脱水素反応については,アルキル基を もつ側鎖構造が関与して,その結果,水素濃度 には変化がなかったものと考えられる.

#### 4.2 芳香族混合燃料の酸化過程

図 14 は、芳香族混合燃料 AR50 の酸化実験を O<sub>2</sub> 濃度 5vol% (当量比 2.5)、滞留時間 25ms のも とで行った結果を炭素原子および水素原子モル 数比 C<sub>p</sub>/C<sub>f</sub>、H<sub>p</sub>/H<sub>f</sub>で示す. 図からわかるよう に、Tr=1200 K 付近まで消費される O<sub>2</sub> は少なく、 また、燃料中の直鎖成分 C<sub>12</sub>~C<sub>14</sub> および芳香族 成分 C<sub>10</sub> や C<sub>11</sub> にもほとんど変化がみられない が、C<sub>2</sub>H<sub>4</sub> 濃度は窒素中の熱分解時よりも若干高 くなり、H<sub>2</sub> 濃度は、熱分解時よりも低下する. 1350 K を越えると、温度上昇とともに生成され た C<sub>2</sub>H<sub>4</sub> は酸化して CO や CO<sub>2</sub> が生成されるが、



Fig. 15. Effect of equivalence ratio on thermal cracking of AR50 fuel.

 $C_2H_2$  濃度は増加する傾向にある.また,直鎖燃 料 ARO ではほとんど検出されなかった中沸点成 分  $C_5 \sim C_9$  が,温度上昇とともに増加する傾向 があることから,芳香族成分の存在が熱分解で 生成した中沸点成分の酸化も阻害していること が考えられる.ディーゼル燃焼では,このよう に熱分解を妨げられた炭化水素から PM が生成 される過程を解明することが重要であると考える.

次に、芳香族成分の酸化に及ぼす O<sub>2</sub> 濃度の 影響を調べた.図 15 は、AR50 燃料で、雰囲気 温度 1350 K、滞留時間 25ms、酸素濃度 5% 一定 のもとでの C<sub>p</sub>/C<sub>f</sub>、H<sub>p</sub>/H<sub>f</sub>の変化を当量比 $\phi$ に 対して示す.当量比の変化に対して直鎖燃料成 分 C<sub>12</sub>~C<sub>14</sub> および芳香族燃料成分 C<sub>5</sub>~C<sub>11</sub> は、  $\phi$ =1.2 で最も少なく、このとき O<sub>2</sub> 消費量も多く CO<sub>2</sub> が最高濃度となる.これより過濃側では、 燃料成分自身も増加する傾向にあり、O<sub>2</sub> 消費量 も少なく CO<sub>2</sub> は極端に減少する.低沸点成分に ついては、 $\phi$ =1.2 で C<sub>2</sub>H<sub>2</sub> 濃度が高くなり、当量 比が高くなるにつれ低沸点炭化水素成分が増加 するが、この過濃側での増加は、C<sub>2</sub>H<sub>4</sub>の生成量の増加によるものである。

## 5 まとめ

以上,高温場におけるディーゼル燃料の化学 的過程を調べるため流動反応装置を試作して, 直鎖飽和炭化水素燃料と芳香族含有燃料の低級 化過程に及ぼす雰囲気温度,反応時間および酸 素濃度の影響を安定な炭化水素成分を対象にし て調べた.さらに,急速圧縮装置によるディー ゼル燃焼過程における炭化水素成分と比較し て,本装置がディーゼル燃料の熱分解過程の解 析に有効であることを確かめた.その結果,以 下のことが明らかになった.

(1) 直鎖飽和炭化水素燃料の熱分解は,雰囲 気温度 1000 K 付近で始まり,温度の上昇とと もに C<sub>2</sub>H<sub>4</sub>, C<sub>2</sub>H<sub>2</sub>,および C<sub>3</sub>H<sub>6</sub> などの不飽和低 級炭化水素が単調に増加する.また,1500 K で は,直鎖炭化水素燃料はすべて低級化する.

(2) このとき,燃料の熱分解過程で生成した 低沸点炭化水素の約 10%の水素が生成され,そ の生成量は 1350 K 付近から急激に増加する.

(3) 低酸素濃度のもとでの燃料の熱分解成分 濃度は、1000 K 付近までは窒素中での熱分解成 分濃度とあまり変わらない。

(4) 燃料に芳香族成分が含まれると,熱分解 温度は約150 K 高くなり,1500 K においても高 濃度の芳香族成分は分解されずに残り,直鎖炭 化水素燃料の熱分解も妨げられる.

(5) 燃料の熱分解過程は,単位時間当たりの 受熱量に支配されるので,雰囲気温度の影響が 大きいと考えられる.

(6) ディーゼル燃焼過程の着火遅れ期間にお ける燃料の低級化過程については,流動反応装 置による熱分解過程で知ることができる。

### 参考文献

 Shundoh, S., Kakegawa, T., Tsujimura, K. and Kobayashi, S., The Effect of Injection Parameters and Swirl on Diesel Combustion with High Pressure Fuel Injection, SAE Paper 910489, (1991).

- (2) Mikulic, L. Kühn, M., Schommers, J. and Willig, E., Exhaust-Emission Optimization of DI-Diesel Passenger Car Engine with High-Pressure Fuel Injection and EGR, SAE Paper 931035, (1993).
- (3) 柳原弘道,佐藤康夫,水田準一,均一・高拡 散率な混合気形成による直噴ディーゼルの 燃焼解析,自技論, Vol.28, No.4, (1997), pp.17-22.
- (4) 堀田義博, 中北清己, 稲吉三七二, 冬頭孝之, 渡部哲, 小型高速 DIディーゼルの燃焼改善
   (第1報 高速・全負荷時のスモーク生成 要因), 自技論, Vol.31, No.3, (2000), pp.5-10.
- (5) 赤坂行男,桜井嘉人,軽油性状が直噴ディー ゼルエンジンからの大気汚染物質に及ぼす 影響,機論(B編),63巻,607号,(1997), pp.1091-1097.
- (6) Litzinger, T. A., Brezinsky, K. and Glassman, I., The Oxidation of Ethylbenzene Near 1060 K, Combust. & Flame, 63, (1986), pp.251-267.
- Marinov, N. M., Pitz, W. J., Westbrook, C. K., Vincitore, A. M., Castaldi, M. J., Senkan, S. M. and Melius, C. F., Aromatic and Polycyclic Aromatic Hydrocarbon Formation in a Laminar Premixed n-Butane Flame, Combust. & Flame, 114, (1998), pp.192-213.
- (8) Hunter, T. B., Wang, H., Litzinger, T. A. and Frenklach, M., The Oxidation of Methane at Elevated Pressures: Experiments and Modeling, Combust. & Flame, 97, (1994), pp.201-221.
- (9) Dryer, F. L. and Brezinsky, K., A Flow Reactor Study of the Oxidation of n-Octane and Iso-Octane, Combust. Sci. and Tech., Vol.45, (1986), pp.199-212.

- (10) Westbrook, C. K, Curran, H. J., Pitz, W. J., Griffiths, J. F., Mohamed, C. and Wo, S. K., The Effects of Pressure, Temperature, and Concentration on the Reactivity of Alkanes : Experiments and Modeling in a Rapid Compression Machine, 27th symp. (Int.) on Combust., The Combustion Institute, (1998), pp.371-378.
- (11) Curran, H. J., Pitz, W. J., Westbrook, C. K., Callahan, C. V. and Dryer, F. L., Oxidaition of Automotive Primary Reference Fuels at Elevated Pressures, 27th symp. (Int.) on Combust., The Combustion Institute, (1998), pp.379-387.
- (12) Barbella, R., Ciajolo, A. and D'Anna, A.,
  Pyrolysis and Oxidation of n-Tetradecane during Combustion in a Diesel Engine, 23rd Symp. (Int.) on Combust., The Combustion Institute, (1990), pp.1079-1085.
- (13) Rhee, K. T., Myers, P. S. and Uyehara, O. A., Time- and Space- Resolved Species Determination in Diesel Combustion Using Contineous Flow Gas Sampling, SAE Paper 780226, (1978).
- (14) Aoyagi, Y., Kamimoto, T., Matsui, Y. and Matsuoka, S., A Gas Sampling Study on the Formation Processes of Soot and NO in a DI Diesel Engine, SAE Paper 800254, (1980).
- (15) Ikegami, M., Miwa, K. and Li, X., Spray Process and Fuel Pyrolysis in the Initial Stage of Diesel Combustion, Bull. of JSME, Vol.29, No.253, (1986), pp.2198-2195.
- (16) 島崎直基,畑中洋一,横田克彦,中平敏夫,燃 焼室内のガスサンプリングなどによるディ ーゼル燃焼解析,自技論,Vol.28, No.1, (1997), pp.29-34.
- (17) Ishiyama, T., Miwa, K. and Horikoshi, O., A Study on Ignition Process of Diesel Sprays, JSME Int. Jour. Series B, Vol.38, No.3, (1995), pp.483-489.

- (18) 朝井豪, 倉田和郎, 横山哲也, 千田二郎, 藤本 元, 直噴式ディーゼル機関におけるレーザ ー誘起散乱法・レーザー誘起赤熱法を用い たすす挙動の解明, 自技論, Vol.28, No.3, (1997), pp.29-34.
- (19) Corcino, F. E., Vaglieco, B. M. and Valentino, G., A Study of Physical and Chemical Delay in a High Swirl Diesel System via Multiwavelength Extinction Measurement, SAE Paper 980502, (1998).
- (20) Ishiyama, T., Miwa, K. and Kanno, A., Experimental Study on Fuel Air Mixture Formation and Ignition Process in Diesel Combustion, Int. symp. COMODIA90, (1990), pp.565-570.

- (21)石山拓二,三輪惠v宮本雅信,田尾知久,噴霧の着火に及ぼす芳香族炭化水素の影響,機論(B編),59巻,560号,(1993), pp. 393-398.
- (22) 山本研一,堤繁,工業化学全集5石油・石油 化学,(1966),pp.151-156,日刊工業新聞社.
- (23) Uyehara, O. A., Estimating Mixing and Sooting in Diffusion Flames, SAE Paper 831338, (1983).

[受付:2001年5月18日,受理:2001年8月31日]

# Investigation of Thermal Cracking and Oxidation Process of Diesel Fuel Using a Flow Reactor

## Tomoko NAKAMI\*, Akio IKEDA\*\*, Kei MIWA\*, Yoshiyuki KIDOGUCHI\*\*\* and Ali MOHAMMADI\*

\*Ecosystem Engineering, Graduate school of Engineering, The University of Tokushima \*\*YANMAR DIESEL ENGINE CO., LTD. \*\*\*Mechanical Engineering, Faculty of Engineering, The University of Tokushima

A flow reactor was used to study the chemical processes of diesel ignition such as thermal decomposition and oxidation of diesel fuels. It is found that diesel fuel decomposition begins at a temperature over 1000 K, producing mainly unsaturated light hydrocarbons such as  $C_2H_4$ ,  $C_2H_2$ , and  $C_3H_6$ .  $H_2$  is produced when fuel is cracked into light hydrocarbons and its concentration shows a drastic increase as temperature exceeds 1350 K. Thermal decomposition of n-paraffins completes at a temperature of 1500 K. However, aromatic fuels decompose with difficulty, and some aromatic components remain at 1500 K. The aromatic components also restrain n-paraffin fuel from thermal cracking. The oxidation experiment shows that light hydrocarbons are oxidized into CO and  $CO_2$  at a temperature above 1200 K.